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Abstract 

Batteries are a key component of the smart grid also 

described as the internet of things (IoT). The military has a 

decidedly greater need for digital information on not only 

batteries but all key components of its military equipment. It 

is not surprising that these demands for increased high 

fidelity battery information might be benefitted by using 

artificial intelligence algorithms. 

Jolson Technologies is developing battery models based on 

neural networks that provide two key metrics, namely a state 

of charge (SOC, fuel gauge) and a state of health (SOH, life 

gauge). We will show how both these fundamental values are 

dependent on the determination of the end of discharge 

charge capacity. The focus on charge capacity is most 

important in motive power or cycling applications (EVs and 

others), where the battery capacity is paramount. Perhaps 

more generally, we will describe an approach to battery 

models that is perhaps “anti-Google”. 
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Introduction 
The ‘Smart Grid’ and ‘Internet of Things’ are related 

concepts of creating a better electrical grid with the use of 

digital communications and control technology. It has many 

potential benefits including: grid energy efficiency, 

regulation and cost savings. It is a concept that has been 

widely embraced by industry, but slow to deploy. Batteries 

are a key component since they must be connected to an 

electrical grid for charging and they represent a significant 

resource of stored electrical power. Accurate models for 

batteries are a key need for the use of batteries in the smart 

grid [1, 2].  

The military is also involved in developing its version of the 

smart grid, not only for batteries but for all their military 

equipment. Since logistics are often the hidden factor that 

portends the success of military objectives, the motivations 

are clear. 

The smart grid depends on information. What is the 

information needed from batteries? Certainly, the ability to 

deliver stored energy and their amounts is key. The need for 

charging and when are also key. Some of this information 

involves the user and some of it is based on the state of the 

battery. It is the battery states rather than user demands that 

are the focus here.  

 

The state parameters common to all rechargeable batteries 

are: state of charge (SOC), state of power (SOP) and state of 

health (SOH). SOC is generally the fuel gauge, most 

important for cycling applications. SOP is important for 

applications where power is more important than capacity. 

An example is hybrid electric applications where the battery 

is used for surges in electrical demand allowing for a lower 

power prime mover. SOH is a life gauge which tracks the 

degradation of the battery as it ages. SOH might have SOC 

and/or SOP as key metrics depending on the application.  

The battery applications are important, since different 

applications have different ways of operating the batteries. 

The major battery applications include: engine starting, 

back-up power, motive power and portable electronics. 

While there are certainly overlaps in these broad categories, 

it is the way the batteries are charged that creates the 

differences in these applications. Motive power applications 

are also known as cycling applications where the battery is 

discharged, usually followed by a full charge. For back-up 

power applications, the batteries typically remain on charge 

(float charge) except for power outages where they are 

discharged and then recharged back to float charge. Engine 

starting is a hybrid of these applications, where the first 

battery task is starting the engine and then the battery is 

recharged and float charged as long as the vehicle is running. 

Our focus is on motive or cycling applications where the 

primary battery parameters are energy and charge capacity. 

The decline in capacity due to degradation over life is the 

primary consideration in increasing the accuracy of battery 

monitors for cycling applications. 

We are all told by the technology companies that calculating 

data in the cloud represents the end goal for IoT applications. 

Most accept this without question. However, if SOC and 

SOH can be computed at the battery rather than in the cloud 

(which really means a remote computer), then the amount of 

data transmitted can be reduced by 4 orders of magnitude as 

represented in Figure 1. 

Cloud based solutions make sense for some applications, but 

perhaps not all. While transmitting massive amounts of data 

is clearly in the interest of the technology companies, for the 

companies and individuals this transmission of data is an 

expense that is best minimized. This efficiency is probably 

more critical in the military. 
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State of Charge 
Most would consider current integration or Ah counting to 

be the state of the art for determining battery capacity and 

many might question why improvements are needed. We 

will first relate an anecdote that most should recognize and 

then describe the underlying factors. 

Most of us have had a cell phone battery go bad. When the 

phone battery is new the Ah counting works well with the 

SOC gauge counting down from 100% to low values prior 

to the phone shutting off. However, after the phone battery 

has aged, the SOC gauge seems to count down at the same 

rate as usual, but when reaching a SOC of perhaps 50% the 

phone shuts down. This scenario continues with the SOC 

increasing at the point of shut down until we replace the 

battery or phone. This is a failure of the Ah counting SOC 

model. After the battery capacity degrades significantly, the 

gauges yield no real information for when the phone will 

shut off. Ideally, we want a SOC gauge that goes from 100% 

to near 0% and then shuts down, at any time over the battery 

life. After some capacity loss, this will also make the ‘count-

down’ go faster which will again be accurate to the condition 

of the battery and useful information to the user. 

Ah counting will only determine the Ah discharged (and 

does so with excellent accuracy), but to determine the SOC 

you also need to know the full discharge capacity. This is 

shown by the equation for SOC 

                   SOC = (1 – AhD / AhCap) * 100                   (1) 

where AhD is the Ah discharged determined by Ah counting 

and AhCap is the battery capacity in Ah. As mentioned, the 

AhCap can change over life due to degradation but can also 

change from discharge to discharge and with temperature 

and Peukert effects (changing capacity with discharge rate). 

In other words, it normally has some variation. 

So for the cell phone anecdote, the programmed AhCap was 

set to the new battery capacity. When new, the battery 

capacity matched the programmed AhCap and the SOC 

gauge worked well. However, after the battery aged and the 

battery capacity declined we have the phone shutting off at 

a higher SOC. For example, at a 50% loss of capacity the 

battery shuts off at 50% SOC, an error of 50%. 

If the programmed AhCap is changed over life to match the 

actual battery capacity, the SOC gauge will work ideally. So 

what is needed is a way to measure or calculate the AhCap. 

The difficulty of this simple task is demonstrated by the lack 

of commonly available accurate SOC and SOH battery 

monitors.  

AhCap is certainly easy to determine if we discharge the 

battery fully, and record the AhD at the end of discharge. 

However, doing this every cycle is a constraint that would 

be unacceptable to users and in some applications like 

hybrids, never attained. This means that the AhCap must be 

determined prior to the end of discharge, a demand that 

requires accurate prediction of the future.  

The easiest next step of improvement would be to implement 

a changing AhCap over life. For an application that has a 

static use profile, this is possible and has been used to ‘fix’ 

the problem in sophisticated systems (like EVs). But most 

battery applications don’t have a static use profile, in reality 

far from it. So a better battery SOC monitor is needed.  

State of Health 
The SOH metric can be defined in many ways, but capacity 

decline and/or power decline (internal resistance increase) 

are the most applicable. For motive applications, the SOH 

can simply be based on the battery capacity, as shown in this 

equation for SOH 

     SOH = (1 – (AhCap - AhE) / (AhN - AhE)) * 100      (2) 

where AhCap is still the battery capacity in Ah, AhN is the 

Ah capacity of a new battery (a constant) and AhE is the end 

of life Ah capacity. For SOH, the required metric is the same 

value required for SOC, namely the AhCap. 

So the AhCap is the single most important parameter in the 

determination of both SOC and SOH, buts its determination 

remains elusive. 

We have been working on using neural network (NN) 

models to advance the state of the art in battery modeling. 

NN models are one of the first and most widely used 

techniques that have become known as artificial intelligence. 

They are a member of learning or trained algorithms which 

use data to create the models. Once created, the result is just 

one multiple input equation ideal for performing repetitive 

calculations on large data sets. The ability to calculate large 

data sets, which is common knowledge, is based on the 

models’ fast calculation abilities. But they can also be used 

on small data sets generated in a time series, as is the case 

with battery data. In addition, due to the low calculation 

overhead required, the model code can easily fit in the 

programming space of any battery specific integrated circuit 

with an integrated microprocessor. 

 
 
Figure 1. Two scenarios for computing battery data. On 

the left, all data is transmitted to the cloud where 
calculations are done. On the right, calculations are 

done at the battery with NN models thus reducing data 
transmission by a factor of 104. 
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At a fundamental level, NN models are trained by 

minimizing the total errors (difference between model 

results and the ‘answers’ of the training data). Better models 

have lower average errors than poor models. In effect, the 

models are pattern recognizing. The patterns are the 

correlations in the training data set. For battery modeling, if 

the training data set represents all the battery states over life, 

the resulting models will reflect that. These models could be 

aptly called battery life models. This is quite different from 

most battery models, which model the battery or component 

in some singular state.  

Our training data is derived from laboratory cycle life data. 

In operation, the models calculate in real time using input 

data derived from battery raw data, namely current, voltage 

and temperature. We typically collect data at 1 s intervals, 

which is adequate to capture the variability of most battery 

behavior. Not all this data is used, since we have developed 

selection criteria for the raw data. However, if we had to 

transmit all this data to the cloud (assuming 6 inputs and 4 

bytes per input) we would transmit over 2 MB of data per 

battery per day. With NN models we might transmit 200 

bytes of data a day. This is a factor of 10,000 in data 

reduction with no loss in information. This is perhaps the 

greatest attribute of these models after their accuracy. 

Model Validation – Field Test 
We will now describe field testing of our modeling 

technology using VRLA (gel) wheelchair batteries. We 

worked with a major manufacturer of powered wheelchairs 

to install data acquisition and model calculations over the life 

of a set of wheelchair batteries. This data was supplemented 

with laboratory cycle life data on two additional batteries. 

The data acquisition consisted of current, voltage, 

temperature, Ah depletion (Ah counting) and a Unix time 

stamp. Data was stored locally on the chair and periodically 

collected manually. In addition, we performed periodic 

laboratory testing on the field test batteries to determine their 

capacity and power over life. 

Figure 2 shows the cycle life plot of Ah capacity versus 

discharge Ah throughput for the field test and two lab cycled 

batteries. Immediately recognizable is the dramatic 

difference in Ah throughput for the three batteries. This is an 

indication, at least for the batteries tested, of the cycle life 

extension possible with laboratory cycling versus actual 

field use. The laboratory batteries were cycled with two 

different charge regimes, differing in the amount of finish 

charge delivered. Battery B used a charge algorithm 

analogous to that used normally with the wheelchair and 

battery A used a more aggressive finish charge. The batteries 

also differ somewhat in initial capacity likely attributable to 

manufacturing variations. The combination of significantly 

different cycle lives and capacities presented a true test for 

our NN modeling technology.  

Figure 3 shows the results of SOC modeling versus 

measured SOC for the field data batteries. The data consisted 

of both full discharges (user was asked to discharge over 

several days to end of discharge) and partial discharges 

reflecting actual use patterns (middle of life).  

Figures 4 & 5 show the corresponding results for the 

laboratory cycled data.  

 

 
Figure 2. Cycle life profiles for Field test and the two 

laboratory cycled batteries. 
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Figure 3. Model results for SOC versus actual values 

for field test battery. 
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Figure 4. Model results for SOC versus actual values 

for lab battery A. 
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Here all discharges 

were full 

discharges. The 

average errors are 

shown in Table 1. 

The average errors 

for all three 

batteries were 

similar, at about 

5%. 

Figure 6 shows the SOH results plotted versus Ah 

throughput.  

While calculating average error using linear Ah Throughput 

is possible, it appears the SOH is to a large degree reflecting 

the AhCap data in Figure 2. The key goal of differentiating 

the different cycle lives done with the model has been 

achieved, despite large variations in Ah Throughput and 

AhCap over the lives of the test batteries.  

Acknowledgments 
This paper is based upon work fully funded by Jolson 

Technologies LLC. Any opinions, findings and conclusions 

or recommendations expressed in this material are those of 

the author and do not necessarily reflect the views of the US 

DoD. 

References 
1. Olson, J., Heinzel, J., “Neural Network Models for 

Battery Management Systems” Proceedings of the 46th 

Power Sources Conference, Paper #33.4, Orlando, FL, 

June 9-12, 2014. 

2. Olson, J.  “Neural Network Models Using Multiple 

Indicators for State of Charge and State of Health”, 

Proceedings of the 47th  Power Sources Conference, 

Paper 22.3,  Orlando, FL, June 2016. 

 

 
Figure 6. Model results for SOH for the three test 

batteries. 
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Figure 5. Model results for SOC versus actual values 

for lab battery B. 
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Table 1. Average error for SOC 

for the three test batteries. 

 

Battery Average Error (%)

Field 5.1

A 4.1

B 5.3




